


lating concentration in a binary ideal gas mixture in
boundary-layer approximation. We Þnd that signiÞcant con-
centration oscillations exist, but with a different phasing than
that suggested by Fig. 1. Next, we derive an expression for
the second-order separation ßux. The molar separation rate is
surprisingly large for He–Xe and He–Ar mixtures, of order
10�3M 2a , where M is the acoustic Mach number and a is
the sound speed, suggesting that this process might be prac-
tical for deliberate separation of gas mixtures. The spectrum
of practical applications requiring separation of mixtures is
broad, including large-scale industrial processes such as pe-
troleum reÞning, air separation, and beverage processing,
and smaller-scale processes such as isotope separation and
chemical analysis. A large number of ‘‘physical’’ mixture-
separation techniques7 are well understood and in wide-
spread use, including time-independent thermal diffusion, or-
dinary diffusion, fractional distillation, centifugation,
electromagnetic separation, chromatography, and superßuid
heat ßush. Much work remains in order to evaluate whether
thermoacoustic mixture separation might Þnd a useful niche
in this vast industry. If so, we anticipate apparatus resem-
bling thermoacoustic refrigerators,8 with the large surface
area of the stack �in which pore dimensions are a few times
the thermal penetration depth� providing a large separation
rate, and with feedstock entering and products leaving the
acoustic system at standing-wave nodes.9

Next, we derive an expression for dissipation of acoustic
power, showing that thermal diffusion adds slightly to the
well-known viscous and thermal-relaxation dissipation
mechanisms. Although the contribution of thermal diffusion
to bulk attenuation of sound in gas mixtures is well known,10

we have found only one published discussion2 of this effect
for boundary-layer attenuation.

It will be important to extend this work beyond the re-
strictive assumptions we have used here, in order to evaluate
the phenomenon’s usefulness for practical mixture separa-
tion and its effect on acoustic power dissipation/production

and enthalpy ßux in the stacks of thermoacoustic engines and
refrigerators8 using gas mixtures.11,12 These devices do not
operate in the boundary-layer regime, and axial time-
averaged temperature gradients always exist and concentra-
tion gradients may in fact exist. Until the present work is
suitably extended, thermoacoustics calculations �using codes
such as DeltaE13 versions 1 through 4� for gas mixtures can-
not be trusted.

I. IMPORTANT LENGTH SCALES

We will consider oscillations in a channel, in which all
variables oscillate sinusoidally with time at frequency f. The
wavelength 	�a/ f , where a is the sound speed, is an im-
portant length scale, especially in the direction x of the gas
displacement oscillations, and is much larger than all other
length scales in the problem. The amplitude of the gas dis-
placement oscillations in the x direction is a second impor-
tant length scale, which typically is much smaller than both
the wavelength and the length of the channel.

In the direction y perpendicular to the gas displacement
oscillations, one key length scale is the thermal penetration
depth

����2k/
�cp��2�/
 , �1�

where k is the thermal conductivity of the gas, � is its den-
sity, cp is its isobaric heat capacity per unit mass, � is its
thermal diffusivity, and 
�2� f is the angular frequency.
The thermal penetration depth is approximately the distance
that heat diffuses through the gas in a time 1/� f . Gas much
farther than this from the nearest solid surface experiences
adiabatic oscillations, and will not participate in thermoa-
coustic effects. Closely related to the thermal penetration
depth is the viscous penetration depth

����2/
���2�/
 , �2�

where  is viscosity and � is kinematic viscosity. Within ��

of solid surfaces, viscous shear forces cause gradients in the
oscillating velocity and displacement. In gas mixtures, a
third key length scale is the mass-diffusion penetration depth

�D��2D/
 , �3�

where D is the binary mass diffusion coefÞcient �called D12

in some literature�.
The Prandtl number

��cp /k���� /���2 �4�

is a dimensionless measure of the ratio of viscous to thermal
effects, which is near 2/3 for pure monatomic ideal gases and
signiÞcantly smaller for some gas mixtures. A second dimen-
sionless number,

L�k/�cpD���� /�D�2, �5�

is a measure of the ratio of thermal to mass-diffusion effects,
and is also of order one. Simple ideal-gas kinetic theory pre-
dicts � and L independent of pressure and temperature,
which is close to experimental observation.14

FIG. 1. Schematic of a possible separation process near a solid boundary in
a standing wave, in a gas mixture with Prandtl number ��1/4. The solid
arrows show motion of the heavy component, and the light arrows show
motion of the light component. The lengths of the arrows represent velocity,
and the widths of the arrows represent the local concentration of the com-
ponents. As described in the text, �a� through �d� show processes occurring
at time intervals separated by 1/4 of the period of the sound wave. The net
result, shown in �e�, is ßux of the light component upward and ßux of the
heavy component downward.
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Since �� , �� , and �D are all of comparable size in
gases, we can expect that viscous effects and mass-diffusion
effects may be important whenever thermoacoustic effects
are important.

II. THE OSCILLATING VARIABLES

We consider sound propagating in the x direction in a
uniformly mixed two-component ideal gas within a channel
with constant cross sectional area A and hydraulic15 radius rh

much larger than the viscous, thermal, and diffusion penetra-
tion depths but much smaller than the acoustic wavelength.
We adopt the common8 complex notation for time-oscillating
quantities �pressure p, temperature T, vector velocity v with
component u parallel to x and component v perpendicular to
x, density � , mass fraction c, entropy per unit mass s):

p�pm�Re�p1�x �ei
t��••• , �6�

u�Re�u1�x ,y �ei
t��••• , �7�

T�Tm�Re�T1�x ,y �ei
t��••• , �8�

� ,c ,s , etc.�similar to T , �9�

v, v�similar to u . �10�

In this monofrequency, steady-state acoustic approximation,
all the time dependence appears in the factor ei
t. The mean
values �subscript m) are real, but the small amplitudes �sub-
script 1) are in general complex to account for the time
phasing of the oscillating quantities. The coordinate y mea-
sures the distance from the wall.

To establish notation and method, we begin by deriving
the well-known y dependence of the gas velocity,16 using the
x-component of the momentum equation, for which our
acoustic approximation is

i
�mu1��
dp1

dx
�

 �2u1

�y2 . �11�

The momentum equation for a gas mixture is identical to that
of a pure gas. The x derivatives of u1 have been neglected
because they are of order u1 /	 , and hence are much smaller
than the y derivatives, of order u1 /�� . Equation �11� is an
ordinary differential equation for u1(y). With boundary con-
dition u1(0)�0 at the solid surface, its boundary-layer solu-
tion is

u1�
i


�m
�1�e�(1�i)y /���

dp1

dx
. �12�

Later, we will need the spatial average of Eq. �12� over the
cross section A of the channel:

�u1��
i


�m
�1� f ��

dp1

dx
, �13�

where � � denotes the spatial average over A and

f ���1�i ���/2rh �14�

is the spatial average of the exponential. Combining Eqs.
�12� and �13� gives another useful expression for the veloc-
ity,

u1�
�u1�

1� f �
�1�e�(1�i)y /��� . �15�

To Þnd the dependence of the oscillating temperature T
on y is complicated in a gas mixture, because thermal diffu-
sion couples the oscillations of temperature and concentra-
tion. Following Landau and Lifshitz,17 let the concentration c
be the local mass fraction of the lighter component; i.e., c is
the ratio of the mass of the component with the lower mo-
lecular weight to the total mass of gas, per unit volume. Then
the convective mass ßux density of this component is �cv,
and the diffusive mass ßux density of this component is

i���D�“c��kT� /T �“T� , �16�

with barodiffusion neglected. The diffusion coefÞcient D
gives diffusion in response to a concentration gradient, and
the thermal diffusion ratio kT� gives the diffusion in response
to a temperature gradient. Using Eq. �16� with Eq. �57.3� of
Landau and Lifshitz,

���c/�t�v–“c ���“–i, �17�

to eliminate i yields

��c/�t�v–“c ��“–�D“c��DkT� /T �“T� . �18�

This equation shows that the concentration at a point changes
in time due to convection of a concentration gradient past
that point plus diffusion caused by both a concentration gra-
dient and a temperature gradient. Using Eqs. �6�–�10� for all
variables, keeping terms to Þrst order, and realizing that
dcm /dx�0 for a well-mixed gas, Eq. �18� becomes simply

c1�
�D

2

2i � �2c1

�y2
�

kT�

Tm

�2T1

�y2 � . �19�

To examine oscillating heat transfer in the mixture, we
begin by combining Eqs. �57.6� and �58.12� of Landau and
Lifshitz, eliminating q�gi, substituting Eqs. �6�–�10�, and
keeping terms to Þrst order:

�mTm� i
s1�u1

dsm

dx �
�k

�2T1

�y2
�� kT�� �g

�c �
p ,T

�Tm� �g

�T �
p ,c

�“–i1 , �20�

where q is the heat ßux density and g is the chemical poten-
tial per unit mass. Equation �17� shows that “–i1
��i
�mc1 . We have dsm /dx�0 in the present simple
problem, although this will not be the case when dTm /dx
�0 in the stacks of thermoacoustic engines and refrigerators,
nor when dcm /dx�0 in apparatus with substantial net mix-
ture separation. We eliminate s1 using

ds�� �s

�T �
p ,c

dT�� �s

�c �
p ,T

dc�� �s

�p �
T ,c

dp �21�

�
cp

T
dT�� �g

�T �
p ,c

dc�
1

�T
dp , �22�

where we have used two Maxwell relations and the ideal-gas
equation of state. With these substitutions, Eq. �20� becomes
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T1�
p1

�mcp
�

�Tmc1

kT�
�

��
2

2i

�2T1

�y2
, �23�

using the deÞnition

��
�kT� �2

Tmcp
� �g

�c �
p ,T

�24�

for future simplicity.
Equations �19� and �23� comprise two coupled differen-

tial equations in the unknown functions c1(y) and T1(y). In
general, the solid has sufÞcient heat capacity and thermal
conductivity to enforce

T1�0 ��0 �25�

on the gas at the solid surface, so this provides one boundary
condition for the solution. The other boundary condition is
obtained from the fact that, absent condensation and evapo-
ration at the solid, the Þrst-order concentration ßux density
perpendicular to the wall must be zero, which yields

�c1

�y �
0

�
kT�

Tm

�T1

�y �
0

�0. �26�

Equations �19� and �23� are very similar to Eqs. �58.14�
and �58.15� of Landau and Lifshitz, and are simpliÞed ver-
sions of Eqs. �5� and �3� of Raspet et al.6 if we also use our
results for � and kT� �see next section�. However, the present
problem differs signiÞcantly from that of Raspet et al. in two
ways. First, our boundary condition Eq. �26� allows no ßux
of either component into the wall, while their ‘‘wet’’ bound-
ary condition allows ßux of their condensing component into
the wall by ensuring that the partial pressure of the condens-
ing component is constant at the wall. Second, we keep the
kT� term in Eq. �19� while they neglect it in their Eq. �28�.

To solve Eqs. �19� and �23�, subject to the boundary
conditions given by Eqs. �25� and �26�, we can use Eq. �23�
to eliminate c1 from the other equations, obtaining a fourth-
order differential equation for T1 with two boundary condi-
tions:

T1�
p1

�mcp
�

1

2i
���

2��1����D
2 �

�2T1

�y2
�

��
2�D

2

4

�4T1

�y4
, �27�

T1�0 ��0, �28�

�1���
�T1

�y �
0

�
��

2

2i

�3T1

�y3 �
0

�0. �29�

An additional boundary condition is simply that T1 must
remain Þnite as y→� . The solution is

T1�
p1

�mcp
�1�Ce�(1�i)y /��D��1�C �e�(1�i)y /�D�� , �30�

where

��D
2 � 1

2��
2�1��1���/L���1��1���/L�2�4/L � , �31�

�D�
2 � 1

2��
2�1��1���/L���1��1���/L�2�4/L � , �32�

C�
�L ��D��D�

�1��L ����D��D��
, �33�

which can be veriÞed with modest difÞculty by direct sub-
stitution into Eqs. �27�–�29�. �The identities

��D
2

��
2

�
�D�

2

��
2

�1�
1��

L
, �34�

L��D
2 �D�

2 ���
4 , �35�

obtained by manipulating Eqs. �31� and �32�, and the algebra
identity

��D
3 ��D�

3 ����D��D�����D
2 ��D�

2 ���D�D��, �36�

are useful when working through some of the tedious steps
in the derivations in this paper.� Note that �→0 recovers the
usual thermoacoustic solution: When L�1, ��D→�� , �D�

→�D , and C→1; or when L�1, ��D→�D , �D�→�� , and
C→0. The spatial average of the temperature over the cross-
sectional area of the channel is

�T1��
p1

�mcp
�1�C f �D��1�C � f D�� , �37�

where

f �D��1�i ���D/2rh �38�

and similarly for f D� .

III. TYPICAL VALUES

To present some typical numerical values, we consider
He–Ar and He–Xe mixtures, which are of interest in ther-
moacoustic refrigerators.11,12 Although the derivation else-
where in this paper follows Landau and Lifshitz’s notational
preference for mass fraction c, most data are tabulated in
terms of mole fraction n; the two are related by

c�
nLmL

nLmL��1�nL�mH
, �39�

where m is molar mass and the subscripts refer to the lighter
and heavier species. We use viscosity and thermal conduc-
tivity calculations from Giacobbe18 at 20 °C, and mass diffu-
sion coefÞcients interpolated to 20 °C from the measure-
ments of Srivastava19, which are in good agreement with
calculations. We also include the weak concentration depen-
dence of D according to the recommendations of Chapman
and Cowling.20 Based on these data, � and L are shown in
Fig. 2�a�.

Next we need � , which requires evaluation of
(�g/�c)p ,T . Landau and Lifshitz suggest how to proceed.
The chemical potential g �per unit mass� is

g� ĝL /mL� ĝH /mH , �40�

where the caret indicates a molar chemical potential. For
ideal gases, we have

ĝL� ĝL ,pure�RT ln nL , �41�

ĝH� ĝH ,pure�RT ln�1�nL�, �42�
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with R the universal gas constant. Using Eqs. �39�–�42�, it is
straightforward to compute

� �g

�c �
p ,T

�� �g

�nL
�

p ,T
� � �c

�nL
�

p ,T

�
RT

c�1�c ��mL�c�mH�mL��
. �43�

We must also convert from Landau and Lifshitz’s thermal
diffusion ratio kT� to the thermal diffusion ratio kT used in
most other treatments. These differ by a factor of dc/dnL , so
that

kT��kT

mLmH

�nLmL��1�nL�mH�2

�kT

�mL��mH�mL�c�2

mLmH
. �44�

Combining Eqs. �24�, �43�, and �44� we have Þnally

��
��1

�

kT
2

nL�1�nL�
, �45�

where � is the ratio of isobaric to isochoric speciÞc heats.
For kT , we use the experimental data of Atkins et al.,21

ranging over helium mole fractions 0.1�nL�0.5. To inter-
polate and extrapolate elsewhere, we Þt their data with kT

�0.38 nL
1.2 (1�nL)0.8 for He–Ar and kT�0.40 nL

1.3 (1
�nL)0.7 for He–Xe, which give better Þts to the data than

the functional form nL(1�nL) suggested by the simplest ki-
netic theory. Figure 2�b� shows the resulting values of ��D

and �D� . Clearly Fig. 1 was unrealistically naive. Heat and
mass diffusion are so intimately linked that the length scales
��D and �D� appearing in T1(y) are very different from the
familiar �� . Hence, it is also clear that correct calculations
of enthalpy ßux, proportional to Re�T1ũ1� , must include
thermal diffusion. �The tilde denotes complex conjugation.�

We can use Eqs. �23� and �30� to obtain c1(y), which is
plotted in Fig. 3 for a 50–50 He–Xe mixture. The imaginary
part is negative for y��� and is positive for ���y�4�� ,
which is qualitatively consistent with the phenomena we de-
scribed in Fig. 1, where the thermal diffusion occurs during
pressure extrema of Fig. 1�a� and �c� so that the mixture is
most separated in Fig. 1�b� and �d�. However, the large
Re�c1� in Fig. 3 shows again that this oscillating thermal
diffusion is much richer than we had anticipated in Fig. 1.

IV. BOUNDARY-LAYER MASS SEPARATION

The phased oscillating phenomena described above
cause a time-averaged mass separation, whose origin is easy
to understand qualitatively. The oscillating temperature gra-
dient �T1 /�y near the wall causes nonzero concentration os-
cillations near the wall. At this distance from the wall, com-
parable to �� , the oscillating velocity u1 in the x direction
depends on y. If the time phasing is favorable, this produces
a time-averaged mass ßux density �cū of the lighter compo-
nent and �(1�c) ū of the heavier component in the x direc-
tion, while the total mass ßux density � ū remains zero. �The
overbar signiÞes time average.� Exaggerating the magnitudes
of the effects, we could imagine that during one half of the
cycle the light component would be stuck deep in the viscous
boundary layer and the heavy component would be free to
move outside the viscous boundary layer; during the other
half of the cycle the roles would be reversed, with the heavy
component immobilized by viscosity and the lighter compo-
nent free to move. If the velocity were phased correctly with
respect to this oscillating concentration, the time-averaged
result would be ßux of the light component in one direction
along x and ßux of the heavy component in the opposite
direction.

FIG. 2. Some relevant properties of He–Ar and He–Xe mixtures. �a� Values
of � and L, giving the ratios ��

2/��
2 and ��

2 /�D
2 , respectively. �b� The ratios

��D /�� and �D� /�� , which appear throughout our calculations. Each of
these approaches 1 and 1/�L in the two pure-gas limits.

FIG. 3. Real and imaginary parts of c1 , normalized by p1 /pm , for a He–Xe
mixture with nL�0.50. For this mixture, � /���0.445, ��D /���1.16, and
�D� /���0.97.
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The time-averaged second-order mass ßux of the lighter
component is

A��cū�2�
A�m

2
Re��c1ũ1 �]. �46�

To evaluate the right-hand side, we use Eq. �23� for c1(y),
Eq. �30� for T1(y), and Eq. �15� for u1(y). The spatial av-
erage �c1ũ1� involves boundary-layer-approximation inte-
grals of the form

1

rh
�

0

rh
e�(1�i)y /� �1�e�(1�i)y /��� dy�

�������i������

2rh�1���
2/�2�

,

�47�

where � is either ��D or �D� . After tedious algebra leading
to an intermediate result,

��cū�2�
��

4rh

kT� /�

cpTm
Re� p1�ũ1�

�1� f̃ ��
� C� 1�

��D
2

��
2 �

�
���D /�������i���D /������

��D
2 /��

2��
��1�C �

�� 1�
�D�

2

��
2 � ��D� /�������i��D� /������

�D�
2 /��

2��
	 � ,

�48�

the Þnal result is

A��cū�2�
��

4rh

kT�

cpTm
�F trav Re�p1Ũ1]�Fstand Im�p1Ũ1])

�49�

to lowest order in �/rh , where U1�A�u1� is the volume
ßow rate. The traveling-wave and standing-wave factors are
given by

F trav �
���L������L���D /����D� /���

�1��L ��1���1�L����L ��
, �50�

Fstand �
����L������L���D /����D� /���

�1��L ��1���1�L����L ��
.

�51�

Equation �49� can be rewritten in terms of molar quantities:

ṄL ,2�
��

4rh

��1

�

kT

RTm
�F trav Re�p1Ũ1]�Fstand Im�p1Ũ1]),

�52�

where ṄL ,2 is the rate at which moles of the light component
move in the x direction. �Note kT� in Eq. �49�; kT in Eq. �52�.�

Figure 4 shows kTF for He–Ar and He–Xe mixtures.
The factors in Eq. �52� can be grouped into dimensionless
ratios, showing that the average molar separation ßux density
in the channel scales like the product of p1 /pm , �u1�/a , a,
�� /rh , (��1)/4� , and the molar density N/V . The details,
captured in kTF trav and kTFstand , reduce the magnitude of the
effect by roughly 10�2, as shown in Fig. 4. Hence, with (�
�1)/4��10�1, the molar separation ßux in a short porous
medium having rh��� could be of order 10�3M 2(N/V)aA

�where M�
p1
/pm�
�u1�
/a is the acoustic Mach num-
ber�. If such a short porous medium Þlled the cross section of
a chamber whose length was of the order of the acoustic
wavelength, and if nonzero dcm /dx did little to change this
mass separation rate, then a substantial concentration differ-
ence could establish itself in a time of order 1/10�3M 2 f ,
where f is the frequency of the wave. Hence, it seems likely
that thermoacoustic refrigerators using gas mixtures might
have concentration differences across their stacks, if bulk gas
motion such as convection or streaming does not re-mix the
gases with sufÞcient vigor.

Figure 4 also shows that traveling-wave phasing should
be more effective than standing-wave phasing at separating
the mixture, reconÞrming that our initial view of this pro-
cess, illustrated in Fig. 1, was much too naive.

V. BOUNDARY-LAYER ACOUSTIC POWER
DISSIPATION

To Þnd the time-averaged acoustic power dĖ2 dissi-
pated in a length dx of the channel, we write

dĖ

dx
��A

d�pū�
dx

. �53�

Expressing Eq. �53� in complex notation and expanding the
derivative gives

dĖ2

dx
��

1

2
A Re� �ũ1�

dp1

dx
� p̃1

d�u1�
dx � . �54�

We can obtain dp1 /dx from Eq. �13� above. To Þnd
d�u1�/dx , we use the continuity equation ��/�t�“•(�v)
�0, which can be averaged with respect to y in our acoustic
approximation to obtain

i
��1���m d�u1�/dx�0. �55�

Using d���(�/T) dT�(�/a2) dp , we can express the spa-
tially averaged density as ��1���(�m /Tm)�T1�
�(�/a2)p1. Substituting this into Eq. �55�, using Eq. �37�
for �T1�, and eliminating cp by means of the thermodynamic
identity ��1�a2/Tcp yields

FIG. 4. Dimensionless molar-separation-ßux parameters kTF trav and kTFstand

for He–Ar and He–Xe mixtures.
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i
�1����1 ��C f �D��1�C � f D��� p1

��ma2 d�u1�/dx�0 �56�

as an acoustic expression of the continuity equation which
can be solved for d�u1�/dx .

Finally, substituting Eqs. �56� and �13� into Eq. �54�, we
obtain

dĖ2

dx
�

A


2 ��m
�u1�
2


1� f �
2
Im�� f ��

�
���1 �
p1
2

�ma2
Im��C f �D��1�C � f D��� . �57�

The Þrst term gives the viscous damping of sound and the
second term gives the complicated thermal damping in the
presence of thermal diffusion. Using the deÞnition15 of hy-
draulic radius, Eq. �57� reduces to

dĖ2

dS
�

1

4
�m
�u1�
2
��

�
1

4


p1
2

�ma2
���1 �


���D��D��

1�1/�L
, �58�

to lowest order in the �’s, where S is the surface area of the
channel. The Þrst term is the familiar8 boundary-layer vis-
cous dissipation per unit surface area; it is unchanged by
thermal diffusion. The second term represents the combined
dissipative effects of heat and mass diffusion. The limit �
→0 recovers the usual8 thermoacoustic solution, with the
Þnal fraction in the second term of Eq. �58� reducing simply
to �� . �The similar-looking result in Ref. 2 does not recover
the usual thermoacoustic solution when kT→0.)

Figure 5 displays this Þnal fraction in the second term of
Eq. �58� for He–Ar and He–Xe mixtures, divided by �� , so
this Þgure shows the ratio of the present p2 dissipation term
to the pure-gas p2 term involving only �� . The extra dissi-
pation is less than one percent for these mixtures, so it is
unlikely that this effect would have been noticed in measure-
ments to date with thermoacoustic refrigerators. However,
such refrigerators operate with a nonzero dTm /dx , and pre-
sumably also with a nonzero dcm /dx; these effects might
increase the mass-diffusion dissipation.

ACKNOWLEDGMENTS

This work has been supported by the OfÞce of Basic
Energy Sciences in the U.S. Department of Energy. We
thank Bill Ward and Mike Hayden for encouraging us to take
this idea seriously. We are very grateful to Rich Raspet for
quickly and kindly identifying a serious error in an earlier
version of this paper.

1 P. S. Spoor and G. W. Swift, ‘‘Mode locking of acoustic resonators and its
application to vibration cancellation in acoustic heat engines,’’ J. Acoust.
Soc. Am. 106, 1353–1362 �1999�.

2 A. M. Dykhne, A. F. Pal’, V. D. Pis’mennyi, V. V. Starostin, and M. D.
Taran, ‘‘Dynamics of gas-mixtures separation in the Þeld of a sound
wave,’’ Zh. Eksp. Teor. Fiz. 88, 1976–1983 �1985�. �English translation:
Sov. Phys. JETP 61, 1171–1175 �1985�.�

3 V. B. Bozhdankevich, A. M. Dykhne, A. F. Pal’, V. D. Pis’mennyi, V. V.
Pichugin, A. N. Starostin, and M. D. Taran, ‘‘Thermodiffusional separa-
tion of gas mixtures in the Þeld of a sound wave,’’ Dokl. Akad. Nauk
SSSR 288, 605–608 �1986�. �English translation: Sov. Phys. Dokl. 31,
428–430 �1986�.�

4 W. L. M. Nyborg, ‘‘Acoustic streaming,’’ in Physical Acoustics, Volume
IIB, edited by W. P. Mason �Academic, New York, 1965�, pp. 265–331.

5 G. W. Howell, ‘‘Separation of isotopes by oscillatory ßow,’’ Phys. Fluids
31, 1803–1805 �1988�.

6 R. Raspet, C. J. Hickey, and J. M. Sabatier, ‘‘The effect of mass transfer
on sound propagation in cylindrical tubes using the low reduced frequency
approximation,’’ J. Acoust. Soc. Am. 105, 65–73 �1999�.

7 D. M. Ruthven, Ed., Encyclopedia of Separation Technology �Wiley, New
York, 1997�.

8 G. W. Swift, ‘‘Thermoacoustic engines,’’ J. Acoust. Soc. Am. 84, 1145–
1180 �1988�.

9 R. S. Reid, W. C. Ward, and G. W. Swift, ‘‘Cyclic thermodynamics with
open ßow,’’ Phys. Rev. Lett. 80, 4617–4620 �1998�.

10 K. F. Herzfeld and T. A. Litovitz, Absorption and Dispersion of Ultra-
sonic Waves �Academic, New York, 1959�.

11 S. L. Garrett, J. A. Adeff, and T. J. Hoßer, ‘‘Thermoacoustic refrigerator
for space applications,’’ AAIA J. Thermophys. Heat Trans. 7, 595–599
�1993�.

12 M. E. Poese, ‘‘Performance measurements on a thermoacoustic refrigera-
tor driven at high amplitudes, Master’s thesis, The Pennsylvania State
University, 1998. Applied Research Laboratory.

13 W. C. Ward and G. W. Swift, ‘‘Design environment for low amplitude
thermoacoustic engines �DeltaE�,’’ J. Acoust. Soc. Am. 95, 3671–3672
�1994�. Fully tested software and user’s guide available from Energy Sci-
ence and Technology Software Center, U.S. Department of Energy, Oak
Ridge, Tennessee. To review DeltaE’s capabilities, visit the Los Alamos
thermoacoustics web site at www.lanl.gov/thermoacoustics/. For a beta-
test version, contact ww@lanl.gov �Bill Ward� or swift@lanl.gov �Greg
Swift� by email.

14 J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of
Gases and Liquids �Wiley, New York, 1954�.

15 The hydraulic radius is the ratio of gas volume to gas-solid contact surface
area.

16 N. Rott, ‘‘Damped and thermally driven acoustic oscillations in wide and
narrow tubes,’’ Z. Angew. Math. Phys. 20, 230–243 �1969�.

17 L. D. Landau and E. M. Lifshitz, Fluid Mechanics �Pergamon, New York,
1982�.

18 F. W. Giacobbe, ‘‘Estimation of Prandtl numbers in binary mixtures of
helium and other noble gases,’’ J. Acoust. Soc. Am. 96, 3568–3580
�1994�.

19 K. P. Srivastava, ‘‘Mutual diffusion of binary mixtures of helium, argon,
and xenon at different temperatures,’’ Physica �Utrecht� 25, 571–578
�1959�.

20 S. Chapman and T. G. Cowling, The Mathematical Theory of Non-
Uniform Gases �Cambridge University Press, Cambridge, 1939�.

21 B. E. Atkins, R. E. Bastick, and T. L. Ibbs, ‘‘Thermal diffusion in mix-
tures of inert gases,’’ Proc. R. Soc. London, Ser. A 172, 142–158 �1939�.

FIG. 5. The factor by which thermal diffusion multiplies boundary-layer
thermal-relaxation dissipation of acoustic power, for He–Ar and He–Xe
mixtures.

1800 1800J. Acoust. Soc. Am., Vol. 106, No. 4, Pt. 1, October 1999 G. W. Swift and P. S. Spoor: Diffusion and mixture separation


